Cellular Genetic Algorithm for Multi-Objective Optimization
نویسندگان
چکیده
In this paper, we show how cellular structures can be combined with a multi-objective genetic algorithm (MOGA) for improving its search ability to find Pareto-optimal solutions of multi-objective optimization problems. We propose an assignment method of a different search direction to each cell for implementing a cellular MOGA. In our cellular MOGA, every individual in each population exists in a cell of a spatially structured space (e.g., two-dimensional grid-world) where each cell has a different search direction. Such a search direction corresponds to weights in a scalar fitness function defined by the weighted sum of multiple objectives. The selection of parents for generating a new individual in a cell is performed within the neighborhood of that cell based on its search direction. The effectiveness of the proposed cellular MOGA is shown by computer simulations on two-objective flowshop scheduling problems.
منابع مشابه
BI-OBJECTIVE OPTIMIZATION OF RESERVOIR OPERATION BY MULTI-STEP PARALLEL CELLULAR AUTOMATA
Parallel Cellular Automata (PCA) previously has been employed for optimizing bi-objective reservoir operation, where one release is used to meet both objectives. However, if a single release can only be used for one objective, meaning two separate sets of releases are needed, the method is not applicable anymore. In this paper, Multi-Step Parallel Cellular Automata (MSPCA) has been developed fo...
متن کاملMulti-objective Genetic Optimization of Ethane Thermal Cracking Reactor
An industrial ethane thermal cracking reactor was modeled assuming a molecular mechanism for the reaction kinetics coupled with material, energy, and momentum balances of the reactant-product flow along the reactor. To carry out the multi-objective optimization for two objectives such as conversion and ethylene selectivity, the elitist non-dominated sorting genetic algorithm was used. The Paret...
متن کاملMulti-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM
In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...
متن کاملOptimization of a Container Ship Dimensions Using Multi-Objective Genetic Algorithm Method
Today, marine transportation has a significant role in global trade. The characteristics of the containerized shipping have made the number of container ships grow every day and made significant improvements in the construction and operation of these ships. In this research, the main dimensions of a container ship are optimized according to different objectives. This optimization aims to reduc...
متن کاملA New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...
متن کاملApplication of Genetic Algorithm to Determine Kinetic Parameters of Free Radical Polymerization of Vinyl Acetate by Multi-objective Optimization Technique
A Multi-objective optimization procedure has been developed to determine some kinetic parameters of free radical polymerization of vinyl acetate based on genetic algorithm. For this purpose, mathematical modeling of free radical polymerization of vinyl acetate is carried out first and then selected kinetic parameters are optimized by minimizing objective functions defined from comparing exp...
متن کامل